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Abstract

We provide a general condition under which consumption can be sustained indefinitely bounded away
from zero in the continuous time Dasgupta–Heal–Solow–Stiglitz model, by letting augmentable capital
substitute for a non-renewable resource. The assumptions made on the production function are mild, thus
generalizing previous work. By showing that Hartwick’s rule minimizes the required resource input per
unit of capital accumulation, and integrating the required resource input with respect to capital, we obtain a
complete technological characterization without reference to the time path. We also use the characterization
result to establish general existence of a maximin path.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

This paper provides a general condition under which consumption can be sustained indefi-
nitely bounded away from zero in the continuous time Dasgupta–Heal–Solow–Stiglitz (DHSS)
[8,19,20] model, by letting accumulated augmentable capital substitute for depleted exhaustible
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resource. The assumptions made on the production function are mild: both the stock of capital
and the flow of resource input are essential, and the production function is twice continuously
differentiable, monotonically increasing in both inputs and concave, and exhibits strictly dimin-
ishing marginal returns with respect to resource input.

We show that sustainability is equivalent to the initial resource stock being larger than the
cumulative resource input in a Hartwick path where, following Hartwick’s investment rule, cap-
ital accumulation (evaluated at competitive prices) exactly compensates for resource use, for an
arbitrarily small constant consumption level. The key observation is that obeying Hartwick’s rule
minimizes the required resource input per unit of capital accumulation if consumption is to be
sustained at a positive and constant level.1 By integrating the required resource input with respect
to capital we obtain a complete technological characterization of sustainability without reference
to the time path.

Furthermore, we establish general existence of a maximin path by showing that the set of
constant consumption levels, for which the cumulative resource input in the Hartwick path does
not exceed the initial resource stock, is bounded above and contains its least upper bound. Finally,
we show that the maximin Hartwick path exhausts the resource and thus is efficient if and only
if the following scenario does not arise: there is a maximal finite cumulative resource input that
can be attained by a Hartwick path, and this maximum falls short of the initial resource stock.2

This paper thus completes a research agenda initiated by Solow [19]. He let output be a
Cobb–Douglas function of capital and resource input, and showed that an efficient and egali-
tarian maximin path with positive consumption exists if and only if the elasticity of output with
respect to capital, a, exceeds that with respect to resource input, b. Moreover, if this condition is
not satisfied, the greatest lower bound for consumption is zero, so that no positive level of con-
sumption can be sustained indefinitely and any path solves the maximin problem. Together, these
observations show that in the Cobb–Douglas case, (i) the solution of the sustainability problem
depends on whether a > b and (ii) a maximin path always exists.

Our sustainability characterization result (Theorem 1) and our maximin existence and effi-
ciency result (Theorem 2) extend the two results of Solow to a very general class of production
functions. The generalization is useful as it allows one to interpret the two inputs in a more
general way. For instance, one could consider the augmentable capital to also encompass hu-
man capital and technology, which may not be faced with strictly diminishing returns. Also,
the resource might not only be interpreted as fossil fuels since, in the very long run, the atmo-
sphere’s cumulative capacity for absorbing CO2 (without causing serious climate change) is a
non-renewable and exhaustible resource.

We follow Solow by taking an indirect route to establishing existence of a maximin path by
positing a class of candidate paths, since one of the standard assumptions of existence theory—
pointwise boundedness of the relevant variables—is not satisfied: the flow of resource input has
no a priori upper bound, only its integral is bounded. Hence, maximin existence is a non-trivial
result, and the analysis cannot be based on necessary conditions from a problem of minimizing
the integral of resource input.

The sustainability problem has relevance even if one does not ascribe to maximin as an
extreme egalitarian criterion. In particular, a non-trivial sustainable path in the DHSS model
matters also for the criteria of undiscounted utilitarianism [9, Sect. 10.3], sustainable discounted

1 This was suggested already by Buchholz [4, pp. 69–70] (see also [14, p. 25]).
2 To show that, for any initial resource stock, there is a Hartwick path with a sufficiently high constant consumption

level that exhausts the resource appears to require further assumptions.
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utilitarianism [2, Sect. 5], and (extended) rank-discounted utilitarianism [21, Sect. 6.2]: in the
former case no optimal path exists while in the latter cases all paths are equally bad if positive
consumption cannot be sustained.

The paper is organized as follows. In Section 2 we introduce the DHSS model with its as-
sumptions. In Section 3 we present our main results, which are based on propositions that are
proven in Section 4. The proofs of the propositions in turn use several lemmas, the proofs of
which are included in online appendix A.

2. Preliminaries

Denote by k the stock of an augmentable capital good (which is assumed to be non-
depreciating) and by r the flow of an exhaustible resource input. Denote by F : R2+ → R+ the
production function for the capital/consumption good, employing k and r as inputs. The output
F(k, r) is used to provide a flow of consumption, c, or to augment the capital stock through
a flow of net investment, k̇. Throughout we impose three assumptions on F (where subscripts
denote partial derivatives):

Assumption 1 (A1). F(0, r) = F(k,0) = 0 for k ∈R+ and r ∈R+.

Assumption 2 (A2). F is continuous, concave and nondecreasing on R
2+.

Assumption 3 (A3). F is twice continuously differentiable on R
2++, with F1(k, r) > 0,

F2(k, r) > 0, and F22(k, r) < 0 for (k, r) ∈R
2++.

Let (k0,m0) ∈ R
2++ be a vector of initial stocks of capital and resource. A path from k0 is

a triplet of functions (c(t), k(t), r(t)), with c(·) : [0,∞) → R+, k(·) : [0,∞) → R+ and r(·) :
[0,∞) → R+, where k(t) is differentiable and (c(t), r(t)) are continuous, and where

k̇(t) = F
(
k(t), r(t)

) − c(t); k(0) = k0. (1)

Write m(·) : [0,∞) → R for the associated function of remaining resource stock:

m(t) = m0 −
t∫

0

r(τ ) dτ for t � 0.

A feasible path (c(t), k(t), r(t)) from (k0,m0) is a path from k0 satisfying m(t) � 0 for all t � 0.
Note that along any feasible path (c(t), k(t), r(t)) from (k0,m0), both k(t) and m(t) are contin-
uously differentiable functions of t . A feasible path (c(t), k(t), r(t)) from (k0,m0) is resource
exhausting if

∫ ∞
0 r(t) dt = m0, and efficient if there is no feasible path (c′(t), k′(t), r ′(t)) from

(k0,m0) with c′(t) � c(t) for all t � 0 and c′(τ ) > c(τ) for some τ � 0.3 A triplet (c, k, r) ∈R
3++

satisfies Hartwick’s reinvestment rule [12,11] if

F(k, r) − c = F2(k, r)r. (HaR)

3 Usually we employ the strict inequality for an interval of time, because in continuous time spikes do not matter. Here,
however, c(t) is continuous, so that we can use this equivalent definition.
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A path (c(t), k(t), r(t)) from k0 is egalitarian if there is c � 0 such that c(t) = c for all t � 0.
A feasible path (c(t), k(t), r(t)) from (k0,m0) is a maximin path if

inf
t�0

c(t) � inf
t�0

c′(t) (2)

for every feasible path (c′(t), k′(t), r ′(t)) from (k0,m0). Refer to inft�0 c(t) as the maximin
value if (c(t), k(t), r(t)) from (k0,m0) is a maximin path, where it follows from the definition
of a maximin path that all maximin paths have the same maximin value. A maximin path is
non-trivial if the maximin value is positive.

Define the set of positive sustainable consumption levels as:

C(k0,m0) = {
c ∈ R++: there is a feasible path

(
c(t), k(t), r(t)

)
from (k0,m0) with c(t) � c for t � 0

}
.

Assumptions A1–A3 do not imply that this set is non-empty. In particular, if

F(k, r) = karb for (k, r) ∈ R
2+, with a > 0, b > 0 and a + b � 1, (3)

then assumptions A1–A3 are clearly satisfied. However, as shown by Solow [19, Sect. 8 &
App. B], the set C(k0,m0) is non-empty if and only if a > b.

3. Main results

In order to relate Hartwick’s rule to the minimization of resource input and thus provide tech-
nological conditions for sustainability we will make use of the resource requirement functions
established in the following lemma by considering the problem

min{r: F(k,r)>c}
r

F (k, r) − c
. (4)

The domain of these resource requirement functions is the set of consumption–capital pairs
which allow for positive capital accumulation:

D = {
(c, k) ∈ R

2++: there is r > 0 such that F(k, r) > c
}
.

Note that D is non-empty since (c,1) ∈ D whenever 0 < c < F(1,1). For every k ∈ R++,
D(k) ≡ {c ∈ R++: (c, k) ∈ D} is the non-empty interval (0, limr→∞ F(k, r)).

Lemma 1. Assume A1–A3. Then p : D →R++ and r : D →R++ defined by

p(c, k) ≡ min{r: F(k,r)>c}
r

F (k, r) − c
and

r(c, k) ≡ arg min
{r: F(k,r)>c}

r

F (k, r) − c
for all (c, k) ∈ D

are continuously differentiable single-valued functions with

p1(c, k) > 0 and r1(c, k) > 0 for all (c, k) ∈ D. (5)

Furthermore, (c, k, r) satisfies (HaR) if and only if r = r(c, k).

For (c, k) ∈ D, problem (4) has the following first-order condition:

F
(
k, r(c, k)

) − c = F2
(
k, r(c, k)

)
r(c, k),
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verifying that Hartwick’s rule (cf. (HaR)) is satisfied at its minimum. Hence,

1

F2
(
k, r(c, k)

) = p(c, k) = r(c, k)

F (k, r(c, k)) − c
,

implying that p(c, k) can be interpreted in two ways: The left-hand side is the marginal cost of k̇

in terms of r , while by (1) the right-hand side is the average cost of k̇ in terms of r , keeping
consumption fixed at c. Since the marginal cost of k̇ in terms of r is increasing in r (cf. A3),
the average cost of k̇ in terms of r is minimized by obeying Hartwick’s reinvestment rule, and
p(c, k) is the required resource input per unit of capital accumulation if consumption is to be
sustained at c.

If (c, k) ∈ D, then by Lemma 1 there are k′ < k and c′ > c such that (0, c′) × (k′,∞) ∈ D.

Since p(c, ·) is continuous on (k′,∞), the Riemann integral
∫ k′′
k

p(c, x) dx is well-defined for
every k′′ > k. Hence, we may define m : D → R++ ∪ {∞} by

m(c, k) =
∞∫

k

p(c, x) dx.

Since p(c, x) is the required resource input per unit of capital accumulation if the capital stock
equals x, the function m determines the required cumulative resource input needed to sustain
the consumption level c from the initial capital stock k. It is found by integrating p(c, ·) from k

to ∞, and enables one to obtain a technological characterization of the sustainability problem
without reference to a time path. That the upper bound of this integral is ∞ follows from the
result that, for a technology satisfying assumptions A1–A3, capital inevitably has to grow to
infinity if consumption is to be bounded away from zero forever (cf. Lemma 5 of Section 4).

To establish the relationship to the corresponding time path, we must show that there exists a
unique solution on [0,∞) to the initial value problem

ẋ(t) = F
(
x(t), r

(
c, x(t)

)) − c; x(0) = k0. (6)

If (c, k0) ∈ D and problem (6) has a unique solution kc(t) for t ∈ [0,∞), then

∞∫

0

r
(
c, kc(t)

)
dt =

∞∫

0

r(c, kc(t))

F (kc(t), r(c, kc(t))) − c
k̇c(t) dt

=
∞∫

0

p
(
c, kc(t)

)
k̇c(t) dt =

∞∫

k0

p(c, x) dx = m(c, k0) (7)

by (6) and the change of variable formula. In this case, refer to the egalitarian path (cc(t), kc(t),

rc(t)) with cc(t) = c > 0 and rc(t) = r(c, kc(t)) for t ∈ [0,∞) as a Hartwick path from k0.
Define the Hartwick path from k0 with c = 0 as the trivial egalitarian path (c0(t), k0(t), r0(t))

where c0(t) = 0, k0(t) = k0 and r0(t) = 0 for all t ∈ [0,∞); this path exists and is always
feasible.

The basic intuition for our results is illustrated in Fig. 1: If there exists a feasible path from
(k0,m0) that sustains consumption at or above c > 0 — illustrated by the dashed path in the figure
— then, by (7), the Hartwick path from k0 with c(t) = c for t ∈ [0,∞) satisfies

∫ ∞
0 rc(t) dt =∫ ∞

0 r(c, kc(t)) dt = m(c, k0) � m0 and is thus feasible, since it minimizes resource input per unit
of capital accumulation.
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Fig. 1. Minimizing the resource depletion/capital accumulation ratio.

We can now state our sustainability characterization result which shows how the cumulative
resource requirement function m can be used to formulate a necessary and sufficient condition
for sustainability without making reference to a time path.

Theorem 1. Assume A1–A3, and let (k0,m0) ∈ R
2++ be given. Then C(k0,m0) is non-empty if

and only if infc∈D(k)m(c, k) < m0.

Remark 1. The Cass–Mitra [7] integral criterion characterization of sustainability also translates
information about time paths to information about the technology. However, while the present
characterization focuses directly on maintaining constant consumption (by following Hartwick’s
rule), the Cass–Mitra characterization focuses on behavior associated with maintaining constant
output as a means to providing a consumption stream that is bounded away from zero.4

Our maximin existence result first shows that a maximin path exists for any (k0,m0) ∈ R
2++,

and that the maximin value can be attained by following a Hartwick path from k0. To describe the
maximin efficiency result we introduce two definitions: Let C∗(k) ≡ {c ∈ D(k): m(c, k) < ∞},
and define m∗ :R++ → R+ ∪ {∞} by

m∗(k) =
{

supc∈C∗(k)m(c, k) if C∗(k) 	= ∅,

0 otherwise.

Given (k0,m0) ∈R
2++, efficiency of the maximin Hartwick path is ensured if m0 is smaller than

or equal to m∗(k0) which may be finite or infinite. With a strict inequality the maximin Hartwick
path is regular, which essentially means that if, along such a path, consumption is decreased on

4 The Cass–Mitra characterization is in a discrete-time model, where (as noted by Dasgupta and Mitra [10]) Hartwick’s
rule does not hold for efficient and egalitarian paths. So, obeying Hartwick’s rule is not a natural benchmark in that setting.
Discussion of the relationship to this and other relevant literature (in particular [3,9,15,18]) can be found in [17, Sect. 2].
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a small initial interval (0, t), then consumption can be increased beyond t by a constant positive
amount.5

Theorem 2. Assume A1–A3, and let (k0,m0) ∈ R
2++ be given. Then there exists a maximin

path from (k0,m0). Furthermore, the Hartwick path from k0 that keeps consumption equal to the
maximin value exists and is

(i) feasible and thus a maximin path,
(ii) efficient if and only if m0 � m∗(k0),

(iii) a regular maximin path if m0 < m∗(k0).

The proofs of the two theorems are based on the following five propositions, which in turn are
proven in the subsequent Section 4. The first proposition shows that if the value of the cumulative
resource input function m is finite for a given consumption–capital pair (c, k0), then the Hartwick
path from k0 with c(t) = c for t ∈ [0,∞) exists and has a cumulative resource input that is given
by m(c, k0).

Proposition 1. Assume A1–A3, and let k0 ∈ R++ be given. Assume that C∗(k0) 	= ∅ and let
c ∈ C∗(k0). Then there exists a Hartwick path (cc(t), kc(t), rc(t)) from k0 with cc(t) = c for all
t � 0. Furthermore,

∫ ∞
0 rc(t) dt = m(c, k0).

Proposition 1 implies C(k0,m0) ⊇ {c ∈ D(k0): m(c, k0) � m0}.
The next proposition establishes the monotonicity and continuity properties of cumulative

resource input as the function m(·, k0) of consumption c and states that if the domain of this
function is bounded, then it contains its upper bound.

Proposition 2. Assume A1–A3, and let k0 ∈ R++ be given. Assume that C∗(k0) 	= ∅. If c′ ∈
C∗(k0), then c ∈ C∗(k0) for all c ∈ (0, c′). Furthermore, m(·, k0) is strictly increasing and con-
tinuous on C∗(k0). Finally, if c′ > 0 and there is m < ∞ such that m(c, k0) � m for all c ∈ (0, c′),
then m(c′, k0) �m and thus c′ ∈ C∗(k0).

The next proposition states that cumulative resource input along any feasible path from
(k0,m0) which sustains some strictly positive consumption level c′ forever is not smaller than
the cumulative resource input given by m(c′, k0).

Proposition 3. Assume A1–A3, and let (k0,m0) ∈ R
2++ be given. If there exists a feasible path

(c(t), k(t), r(t)) from (k0,m0) with c(t) � c′ > 0 for all t � 0, then m(c′, k0) �m0.

Proposition 3 implies C(k0,m0) ⊆ {c ∈ D(k0): m(c, k0) � m0}, meaning that m determines
required cumulative resource input, so that jointly with Proposition 1:

C(k0,m0) = {
c ∈ D(k0): m(c, k0) � m0

}
. (8)

5 The formal definition of a regular maximin path due to Burmeister and Hammond [6] and Dixit et al. [11] will be
provided in Section 4 prior to proving Proposition 5.
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Fig. 2. The cumulative resource requirement function.

Proposition 4. Assume A1–A3, and let (k0,m0) ∈ R
2++ be given. Assume that C∗(k0) 	= ∅. Then

m(·, k0) is convex on C∗(k0) with range that is either equal to (0,∞) or equal to (0,m∗(k0)]
where m∗(k0) ∈ (0,∞).

Propositions 2 and 4 imply that the cumulative resource requirement function m must be of
one of three types as depicted in Fig. 2. Note that (i) if C∗(k0) = ∅, then infc∈D(k)m(c, k) = ∞
and m∗(k0) = 0, and (ii) if C∗(k0) 	= ∅, then infc∈D(k)m(c, k) = 0 and m∗(k0) ∈ (0,∞) (corre-
sponding to the left panel of Fig. 2) or m∗(k0) = ∞ (corresponding to the center or right panel
of Fig. 2).

Efficiency and regularity of the maximin Hartwick path, as stated in Theorem 2, are finally
dealt with by Proposition 5.

Proposition 5. Assume A1–A3, and let (k0,m0) ∈ R
2++ be given. If m0 � m∗(k0), then the

Hartwick path (cc(t), kc(t), rc(t)) from k0 with cc(t) = c for all t � 0 and m(c, k0) = m0 is
efficient. If m0 < m∗(k0), then the Hartwick path (cc(t), kc(t), rc(t)) from k0 with cc(t) = c for
all t � 0 and m(c, k0) = m0 is a regular maximin path.

Proof of Theorem 1. Assume A1–A3, and let (k0,m0) ∈ R
2++ be given. If C(k0,m0) is

non-empty, then infc∈D(k)m(c, k) = 0 < m0 by Eq. (8) and Proposition 4. Conversely, if
infc∈D(k)m(c, k) < m0, then C∗(k0) 	= ∅ and there exists c ∈ C∗(k0) such that m(c, k0) < m0.
By Proposition 1, it is feasible to sustain consumption equal to c > 0 by following the Hartwick
path (cc(t), kc(t), rc(t)) from k0. �
Proof of Theorem 2. Assume A1–A3, and let (k0,m0) ∈R

2++ be given.
Maximin existence. If C(k0,m0) = ∅, then the trivial Hartwick path (c0(t), k0(t), r0(t)) where

c0(t) = 0, k0(t) = k0 and r0(t) = 0 for all k � 0 is maximin.
If C(k0,m0) 	= ∅, then by Eq. (8), C(k0,m0) = {c ∈ D(k0): m(c, k0) � m0}. Hence,

C(k0,m0) is bounded above, since m(·, k0) is strictly increasing (Proposition 2) and convex
(Proposition 4) on C∗(k0). It contains its least upper bound, since by Proposition 2, c∗ ≡ sup{c ∈
D(k0): m(c, k0) � m0} is contained in {c ∈ D(k0): m(c, k0) � m0}. This establishes maximin
existence also in this case.

Part (i). If C(k0,m0) = ∅, then the trivial Hartwick path (c0(t), k0(t), r0(t)) where c0(t) = 0,
k0(t) = k0 and r0(t) = 0 for all k � 0 is maximin.

If C(k0,m0) 	= ∅, then m(c∗, k0) � m0 since c∗ ∈ {c ∈ D(k0): m(c, k0) � m0}. It now follows
from Proposition 1 that the Hartwick path (c∗(t), k∗(t), r∗(t)) from k0 with c∗(t) = c∗ for all
t � 0 is feasible and thus a maximin path.
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Part (ii). The if-part is a direct consequence of Proposition 5. The only-if part follows since
the maximin Hartwick path (c∗(t), k∗(t), r∗(t)) from k0 with c∗(t) = c∗ for all t � 0 does not
satisfy resource exhaustion if m∗(k0) < m0. In this case,

∫ ∞
0 r∗(t) dt = m∗(k0) < m0, and thus

the path is feasible, but inefficient.
Part (iii) is a direct consequence of Proposition 5. �
The class of CES functions can be used to illustrate Theorems 1 and 2. In the Cobb–Douglas

version of the DHSS model, considered by Solow [19], the production function is given by (3),
and thus, clearly satisfies assumptions A1–A3. It is easy to check that D = R

2++ and D(k) =
(0,∞) for each k ∈R++. Thus, p and r are functions from R

2++ to R++, and it is straightforward
to verify that:

p(c, k) = c(1−b)/b

b(1 − b)(1−b)/b
· 1

k(a/b)
.

Therefore, m(c, k0) = ∫ ∞
0 p(c, x) dx is finite if and only if a > b, and infc>0 m(c, k0) equals 0

if a > b and ∞ otherwise. By Theorem 1, C(k0,m0) is non-empty if and only if a > b, which is
the result of Solow [19, Sect. 8 & App. B].

Following Dasgupta and Heal [9, Sect. 7.2] by considering the class of CES production func-
tions beyond the Cobb–Douglas case, so that

F(k, r) = (
ak

σ−1
σ + br

σ−1
σ + (1 − a − b)

) σ
σ−1

for (k, r) ∈ R
2+, with a > 0, b > 0, a + b � 1 and σ > 0, σ 	= 1, we have that:

• With σ < 1, assumptions A1–A3 are satisfied, but infc∈D(k)m(c, k) = ∞ since

p(c, k) = r(c, k)

F (k, r(c, k)) − c
� r(c, k)

F (k, r(c, k))
� b

σ
1−σ

if c ∈ D(k0). This confirms the well-known result that C(k0,m0) is empty.
• With σ > 1, assumption A1 is not satisfied—so that Theorem 1 does not apply—while

clearly C(k0,m0) is non-empty. Problem (4) and, thus, Theorem 1 have no relevance, as
F(k, r) = c along an eventual part of a maximin path.

Finally, the limiting case where inputs are perfect substitutes:

F(k, r) = k + r for (k, r) ∈ R
2+, (9)

yields an example where C(k0,m0) is non-empty and bounded, but does not contain its least
upper bound, thereby showing the significance of Theorem 2. Let (k0,m0) = (1,1) be the vector
of initial stocks of capital and resource. Even though assumption A2 and most of assumption
A3 hold, both A1 (since F(k, r) = 0 requires that both inputs are zero) and the last part of A3
(since F22 = 0) are violated. Hence, maximin existence is not guaranteed by Theorem 2. And
indeed, as demonstrated in online appendix B, C(1,1) = (0,2), implying that any consumption
level below 2 can be sustained indefinitely. However, since the resource stock cannot be instanta-
neously transformed into capital, it is not feasible to maintain a level of consumption that never
falls below 2. Thus, there is no maximin path in this model.

By Theorem 2(ii), the maximin Hartwick path will not be resource exhausting and thus not
efficient if 0 < m∗(k0) < m0 (illustrated by the left panel of Fig. 2). We have not been able to rule
out this case without imposing further assumptions beyond A1–A3. Our investigations indicate
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that this case might occur under A1–A3 if the sum of the output elasticities of k and r is not
bounded away from zero.

4. Proofs of propositions

Throughout this section we assume A1–A3, and let (k0,m0) ∈ R
2++ be given. To prove Propo-

sition 1 we first provide two lemmas.

Lemma 2. Let (c, k0) ∈ D. Suppose that there is a solution kc(t) to the initial value problem (6)
for t ∈ [0, T ), for some T > 0. Then k̇c(t) > 0 for all t ∈ [0, T ).

Remark 2. Under the hypothesis of Lemma 2, we have kc(t) monotonically increasing on [0, T )

by the Mean Value Theorem. Then, either kc(t) is bounded above on [0, T ), in which case a finite
limit, limt→T kc(t), exists; or, kc(t) is not bounded above on [0, T ), in which case kc(t) → ∞
as t → T . In either case, we define

kc(T ) = lim
t→T

kc(t),

it being understood that the limit above belongs to (k0,∞].

Lemma 3. Let (c, k0) ∈ D. Suppose that there is a solution kc(t) to the initial value problem (6)
for t ∈ [0, T ), for some T > 0. Then, for every T ′ ∈ (0, T ),

T ′∫

0

r
(
c, kc(t)

)
dt =

kc(T ′)∫

k0

p(c, x) dx. (10)

Furthermore, if :

∞ > S ≡ lim
T ′→T

T ′∫

0

r
(
c, kc(t)

)
dt, (11)

then kc(T ) < ∞.

Eq. (10) follows from the change of variables formula (cf. (7)).

Proof of Proposition 1. Assume c ∈ C∗(k0) so that m(c, k0) < ∞. Since C∗(k0) ⊆ D(k0), it
follows that c ∈ D(k0) and there is ε ∈ (0, k0) such that c ∈ D(k) for all k ∈ (k0 − ε,∞). Then
r(c, k) is a continuously differentiable function of k from the open set (k0 − ε,∞) to R++. Thus,
f defined by

f (k) = F
(
k, r(c, k)

) − c for all k ∈ (k0 − ε,∞), (12)

is a continuously differentiable function of k from the open set (k0 − ε,∞) to R.
By [13, pp. 162–163 & p. 171] there are a maximal right interval [0, β) and a solution kc :

[0, β) → (k0 −ε,∞) to the initial value problem (6) for t ∈ [0, β), such that if xc : [0, α) → (k0 −
ε,∞) is a solution to the initial value problem (6) for t ∈ [0, α), then α � β and xc(t) = kc(t)

for all t ∈ [0, α). By Lemma 2, k̇c(t) > 0 and kc(t) ∈ [k0,∞) for all t ∈ [0, β).
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We now claim that

β = ∞. (13)

For all T ′ ∈ (0, β), using (10) and the definition of the function m, we have:

T ′∫

0

r
(
c, kc(t)

)
dt =

kc(T ′)∫

k0

p(c, x) dx �
∞∫

k0

p(c, x) dx = m(c, k0). (14)

Thus, ∞ > m(c, k0) � S ≡ limT ′→β

∫ T ′
0 r(c, kc(t)) dt and by Lemma 3, we have kc(β) < ∞,

where kc(β) ≡ limt→β kc(t). Then by using the theorem in [13, p. 171], claim (13) is established.
Given (13), we know that kc from [0,∞) to (k0 − ε,∞) is a solution to the initial value

problem (6) for t ∈ [0,∞). By defining cc(t) = c and rc(t) = r(c, kc(t)) for t ∈ [0,∞), it follows
from (14) that (cc(t), kc(t), rc(t)) is a path from k0 with

∫ ∞
0 rc(t) dt = m(c, k0). �

Proof of Proposition 2. By Lemma 1, the function p is continuously differentiable on D

with p1(c, k) > 0 for all (c, k) ∈ D. Hence, if c′ ∈ C∗(k0) (⊆ D(k0)) so that m(c′, k0) =∫ ∞
k0

p(c′, x) dx < ∞, then, for all c ∈ (0, c′), c ∈ D(k0) and

m(c, k0) =
∞∫

k0

p(c, x) dx <

∞∫

k0

p
(
c′, x

)
dx < ∞,

implying that c ∈ C∗(k0) and m(·, k0) is strictly increasing on C∗(k0) if C∗(k0) 	= ∅.
Let c′ > 0 and assume there is m < ∞ such that m(c, k0) � m for all c ∈ (0, c′). Suppose that

there is k1 > k0 such that
∫ k1
k0

p(c′, x) dx > m. Since, by Lemma 1, there are c′′ > c′ and k′′ < k0

such that the function p is continuous on (0, c′′) × (k′′,∞), we have that J (c) ≡ ∫ k1
k0

p(c, x) dx

is continuous on the interval [c′/2, c′] (see [1, p. 166]). In particular, there is c̃ ∈ (0, c′) such that

m(c̃, k0) �
k1∫

k0

p(c̃, x) dx > m,

contradicting the fact that m(c, k0) � m < ∞ for all c ∈ (0, c′). This implies that m(c′, k0) =
limk1→∞

∫ k1
k0

p(c′, x) dx � m and thus c′ ∈ C∗(k0).
It remains to be shown that m(·, k0) is continuous on int(C∗(k0)). Let c′ ∈ int(C∗(k0)). For

any ε > 0, we can choose c′′ ∈ (c′, supC∗(k0)) and k1 > k0 such that
∫ ∞
k1

p(c′′, x) dx � ε/2.
Since J (c) is continuous on the interval [c′/2, (c′ + c′′)/2] (see [1, p. 166]), we can choose
δ ∈ (0,min{c′/2, (c′′ − c′)/2}) such that |J (c) − J (c′)| < ε/2 if |c − c′| < δ. Then, for all c

satisfying |c − c′| < δ,

∣∣m(c, k0) − m
(
c′, k0

)∣∣� ∣∣J (c) − J
(
c′)∣∣ +

∞∫

k1

∣∣p(c, x) − p
(
c′, x

)∣∣dx <
ε

2
+ ε

2
= ε

since p(·, k0) is increasing and max{c, c′} < c′′. �
To prove Proposition 3 we first provide two lemmas. A path (c(t), k(t), r(t)) from k0 is in-

terior if k(t) > 0 and r(t) > 0 for all t � 0. The phase diagram argument illustrated in Fig. 1
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is based on paths in (k,m) space where the stock of augmentable capital k is a function of the
remaining resource stock m. Interior paths have this property, while non-interior paths where
resource extraction is zero at some time—so that consumption comes from disinvestment of
augmentable capital—do not. This motivates the following lemma.

Lemma 4. Assume that C(k0,m0) 	= ∅ and let c′ ∈ C(k0,m0). If c ∈ (0, c′), then there is a
feasible interior path (c(t), k(t), r(t)) from (k0,m0) with c(t) > c for all t � 0.

We also establish that the finite resource stock implies that positive consumption cannot be
sustained if the stock of augmentable capital is bounded above.

Lemma 5. If a path (c(t), k(t), r(t)) from (k0,m0) has the property that there is c > 0 such that
c(t) � c for t � 0, then lim supt→∞k(t) = ∞.

Proof of Proposition 3. Assume that there exists a feasible path (c′(t), k′(t), r ′(t)) from
(k0,m0) with c′(t) � c′ > 0 for t � 0. For each c ∈ (0, c′), fix the feasible interior path
(c(t), k(t), r(t)) from (k0,m0) with c(t) > c > 0 for t � 0 established in Lemma 4. By Lemma 5,
lim supt→∞k(t) = ∞. Let T0 = inf{t � 0: k(t) > k0}. Then k(T0) = k0 and k̇(T0) � 0 so that

F
(
k0, r(T0)

) = k̇(T0) + c(T0) � c(T0) > c,

establishing that (k0, c) ∈ D and c ∈ D(k0). So, there is ε ∈ (0, k0) such that c ∈ D(k) for all k ∈
(k0 − ε,∞). Then r(c, ·) is a continuously differentiable function from the open set (k0 − ε,∞)

to R++. Thus, f defined by (12) is a continuously differentiable function of k from the open
set (k0 − ε,∞) to R. By [13, pp. 162–163 & p. 171] there are a maximal right interval [0, β)

and a unique solution kc : [0, β) → (k0 − ε,∞) to the initial value problem (6) for t ∈ [0, β). By
Lemma 2, k̇c(t) > 0 and kc(t) ∈ [k0,∞) for all t ∈ [0, β).

We now proceed to verify that m(c, k0) � m0. It is sufficient to establish that
∫ k1
k0

p(c, x) dx <

m0 for all k1 > k0. Suppose on the contrary that there is k′
1 ∈ (k0,∞) such that

∫ k′
1

k0
p(c, x) dx �

m0. Then, there is k1 ∈ (k0, k
′
1] such that

∫ k1
k0

p(c, x) dx = m0. We claim now that

kc(t) > k1 for some t ∈ [0, β). (15)

If β < ∞, then this follows directly from the theorem of [13, p. 171]. If β = ∞, and claim (15)
does not hold, then kc(t) � k1 for all t � 0. By Lemma 3, we have

∞∫

0

r
(
c, kc(t)

)
dt =

kc∞∫

k0

p(c, x) dx �
k1∫

k0

p(c, x) dx = m0,

where kc∞ ≡ limt→∞ kc(t). However, this means that (c, kc(t), r(c, kc(t))) is a feasible path from
(k0,m0). Since c > 0, it follows from Lemma 5 that lim supt→∞ kc(t) = ∞. This clearly con-
tradicts the hypothesis that claim (15) does not hold. Thus, in either case, claim (15) is valid.
Using (15), we infer that there is T ∗ ∈ (0, β) such that kc(T ∗) = k1 and so by Lemma 3,

T ∗∫
r
(
c, kc(t)

)
dt =

k1∫
p(c, x) dx = m0.
0 k0
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Fig. 3. Illustration of the proof of Proposition 3.

Write rc(t) = r(c, kc(t)) and mc(t) = m0 − ∫ t

0 rc(τ ) dτ for t ∈ [0, T ∗]. Since mc : [0, T ∗] →
[0,m0] is continuously differentiable and decreasing on [0, T ∗], it has an inverse function
ic : [0,m0] → [0, T ∗] which is continuously differentiable and decreasing on [0,m0]. We de-
fine hc : [0,m0] → [k0, k1] by hc(m) = kc(ic(m)). Then hc is a continuously differentiable and
decreasing function on [0,m0] which determines the stock of augmentable capital as a function
of the remaining resource stock for a solution to the initial value problem (6).

As (c(t), k(t), r(t)) from (k0,m0) is interior, m : [0,∞) → (0,m0] is continuously differ-
entiable and decreasing on [0,∞) and has an inverse function i : (0,m0] → [0,∞) which
is continuously differentiable and decreasing on (0,m0]. We define h : (0,m0] → [k0,∞) by
h(m) = k(i(m)). Then h is a continuously differentiable function on (0,m0] (but not neces-
sarily a decreasing function as k̇(t) is not necessarily positive) which determines the stock of
augmentable capital as a function of the remaining resource stock when (c(t), k(t), r(t)) is fol-
lowed.

By Lemma 5 there is T ′ ∈ (0,∞) such that k(T ′) > k1. Hence,

h(m) = k
(
T ′) > k1 = kc

(
T ∗) = hc(0) > hc(m) where m = m

(
T ′) ∈ (0,m0),

while h(m0) = k0 = hc(m0) so that {m ∈ [m,m0]: h(m) � hc(m)} is non-empty. By continuity
of h and hc on (0,m0], m̄ = inf{m ∈ [m,m0]: h(m) � hc(m)} > m and h(m̄) = hc(m̄); let k̄

denote this common value. This is illustrated in Fig. 3.
Since h(m) > hc(m) for m ∈ (m, m̄) and h(m̄) = hc(m̄), we have

h(m) − h(m̄)

m − m̄
<

hc(m) − hc(m̄)

m − m̄

for all m ∈ (m, m̄). Letting m → m̄ and noting that h and hc are continuously differentiable on
(0,m0], we obtain h′(m̄) � hc ′(m̄).

Since m̄ ∈ [0,m0), there is a unique T such that m(T ) = m̄ and

h′(m̄)ṁ(T ) = h′(m(T )
)
ṁ(T ) = k̇(T ).
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As ṁ(T ) = −r(T ) < 0 and k̇(T ) = F(k̄, r(T )) − c(T ), we have that

−h′(m̄) = k̇(T )

−ṁ(T )
= F(k̄, r(T )) − c(T )

r(T )
. (16)

Since m̄ ∈ [0,m0), there is a unique T c such that mc(T c) = m̄ and

hc ′
(m̄)ṁc

(
T c

) = hc ′(
mc

(
T c

))
ṁc

(
T c

) = k̇c
(
T c

)
.

As ṁc(T c) = −rc(T c) < 0 and k̇c(T ) = F(k̄, rc(T )) − c, we have that

−hc ′
(m̄) = k̇c(T c)

−ṁc(T c)
= F(k̄, rc(T c)) − c

rc(T c)
. (17)

Recall that c(T ) > c. Hence, it follows from Lemma 1 that

F(k̄, r(T )) − c(T )

r(T )
<

F(k̄, r(T )) − c

r(T )
� F(k̄, r(c, k̄)) − c

r(c, k̄)
= F(k̄, rc(T c)) − c

rc(T c)
.

Combined with (16) and (17) this contradicts h′(m̄)� hc ′(m̄). Thus, m(c, k0)� m0.
It now follows from Proposition 2 that m(c′, k0) � m0 since m(c, k0) � m0 for all c ∈

(0, c′). �
Proof of Proposition 4. Assume that C∗(k0) 	= ∅.

Part 1: m(·, k0) is convex on C∗(k0). We have to prove that for all c′, c′′ ∈ C∗(k0) and λ ∈
[0,1] we have m(λc′ + (1 − λ)c′′, k0) � λm(c′, k0) + (1 − λ)m(c′′, k0). This is trivially true for
λ = 0, λ = 1, or c′ = c′′. So assume c′ 	= c′′ and λ ∈ (0,1).

By Proposition 1, there are Hartwick paths (c′, k′(t), r ′(t)) and (c′′, k′′(t), r ′′(t)) from k0 with∫ ∞
0 r ′(t) dt = m(c′, k0) and

∫ ∞
0 r ′′(t) dt = m(c′′, k0), where suppressed time variables indicate

constant consumption. Construct (c(t), k(t), r(t)) as follows:

c(t) = F
(
k(t), r(t)

) − k̇(t) for all t � 0,

k(t) = λk′(t) + (1 − λ)k′′(t) for all t � 0, (18)

r(t) = λr ′(t) + (1 − λ)r ′′(t) for all t � 0. (19)

By Proposition 3, it suffices to show that (c(t), k(t), r(t)) is feasible from (k0,m0), where m0 ≡
λm(c′, k0) + (1 − λ)m(c′′, k0), with c(t)� λc′ + (1 − λ)c′′ for all t � 0.

Clearly, k(t) is a differentiable function of t , with k̇(t) = λk̇′(t) + (1 − λ)k̇′′(t) for t � 0, and
(c(t), r(t)) are continuous functions of t . Using (18) and (19), for t � 0,

c(t) = F
(
k(t), r(t)

) − k̇(t)

� λ
(
F

(
k′(t), r ′(t)

) − k̇′(t)
) + (1 − λ)

(
F

(
k′′(t), r ′′(t)

) − k̇′′(t)
) = λc′ + (1 − λ)c′′

by the concavity of F . Also, k(t) = λk′(t) + (1 − λ)k′′(t) > 0 for t � 0, and (1) is satisfied
since k(0) = λk0 + (1 − λ)k0 = k0. Finally,

∫ ∞
0 r(t) dt = λ

∫ ∞
0 r ′(t) dt + (1 − λ)

∫ ∞
0 r ′′(t) dt =

λm(c′, k0) + (1 − λ)m(c′′, k0) = m0, thereby completing Part 1.
Part 2: The range of m(·, k0) is either equal to (0,∞) or equal to (0,m∗(k0)] where m∗(k0) ∈

(0,∞). By Proposition 2, it suffices to show that limc↓0 m(c, k0) = 0. Let c′ ∈ C∗(k0) and denote
by (c′, k′(t), r ′(t)) the Hartwick path from k0 with constant consumption equal to c′. Using
Proposition 1,

∫ ∞
r ′(t) dt = m(c′, k0). Let λ ∈ (0,1) and construct (c(t), k(t), r(t)) as follows:
0
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c(t) = F
(
k(t), r(t)

) − k̇(t) for all t � 0,

k(t) = λk′(t) + (1 − λ)k0 for all t � 0,

r(t) = λr ′(t) for all t � 0.

Then (c(t), k(t), r(t)) is a feasible path from (k0, λm(c′, k0)) with, for t � 0,

c(t) = F
(
k(t), r(t)

) − k̇(t)

� λ
(
F

(
k′(t), r ′(t)

) − k̇′(t)
) + (1 − λ)

(
F(k0,0) − 0

) = λc′

by repeating the arguments of Part 1 and using the properties that F is concave and F(k0,0) = 0.
By Proposition 3, m(λc′, k0) � λm(c′, k0), thereby establishing that limc↓0 m(c, k0) = 0 by set-
ting c = λc′ and letting λ ↓ 0. �

We end this section by presenting the proof of Proposition 5. An interior path (c(t), k(t), r(t))

from k0 satisfies Hotelling’s no-arbitrage rule if r(t) is not only continuous but also differentiable
and

Ḟ2(k(t), r(t))

F2(k(t), r(t))
= F1

(
k(t), r(t)

)
for all t � 0. (HoR)

A feasible path (c(t), k(t), r(t)) from (k0,m0) is competitive if there are present-value price
functions p(·) : [0,∞) → R++ and (q1(·), q2(·)) : [0,∞) → R

2, where p(t) is continuous and
(q1(t), q2(t)) are differentiable, such that, for all t � 0,

(
c(t), k(t),m(t), k̇(t), ṁ(t)

)
, where k̇(t) = F

(
k(t), r(t)

) − c(t) and ṁ(t) = −r(t),

maximizes instantaneous profits p(t)c′ + q1(t)k̇
′ + q2(t)ṁ

′ + q̇1(t)k
′ + q̇2(t)m

′ over all quintu-
ples (c′, k′,m′, k̇′, ṁ′) in the production possibility set Y defined by:

Y ≡ {
(c, k,m, k̇, ṁ) ∈R

3+ ×R× (−R+): c + k̇ � F
(
k, (−ṁ)

)}
.

Lemma 6. If a feasible path (c(t), k(t), r(t)) from (k0,m0) is interior, then it satisfies Hotelling’s
rule if and only if it is competitive.

This result is shown by defining, for an interior path (c(t), k(t), r(t)),

p(t) = 1

F2
(
k(t), r(t)

) for all t � 0 (P)

and q1(t) = p(t), q2(t) = 1 for all t � 0. Here p(t) is the present-value price of consumption and
capital accumulation in terms of resource input, which serves as numeraire without specifying
the time of extraction, owing to Hotelling’s rule.

An interior path (c(t), k(t), r(t)) from k0 satisfying (HoR) satisfies the capital value transver-
sality condition if

lim
t→∞p(t)k(t) = 0. (CVT)

Lemma 7. If an interior and competitive path (c(t), k(t), r(t)) from (k0,m0) satisfies the capital
value transversality condition and is resource exhausting, then it is efficient.
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An interior and competitive path (c(t), k(t), r(t)) from (k0,m0) is a regular maximin path if
it6

(i) is egalitarian,
(ii) satisfies the capital value transversality condition and resource exhaustion,

(iii) has finite consumption value:
∞∫

0

p(t) < ∞. (FCV)

By Lemma 7, any regular maximin path is efficient.

Proof of Proposition 5. Part 1: If m0 � m∗(k0), then the Hartwick path (cc(t), kc(t), rc(t))

from k0 with cc(t) = c for all t � 0 and m(c, k0) = m0 is efficient. The existence of
(cc(t), kc(t), rc(t)) follows from Propositions 1 and 4. Since (cc(t), kc(t), rc(t)) is interior and,
by Proposition 1, resource exhausting, it follows from Lemmas 6 and 7 that it is sufficient to
show that (cc(t), kc(t), rc(t)) satisfies (HoR) and (CVT). By invoking [5, Proposition 3] it fol-
lows that (cc(t), kc(t), rc(t)) satisfies (HoR), as it is interior and egalitarian, satisfies (HaR) for
all t � 0, and has the property that cc(t), kc(t) and rc(t) are continuously differentiable.

To show that (cc(t), kc(t), rc(t)) satisfies (CVT), note that by Lemma 5 and the fact that
k̇c(t) = F(kc(t), rc(t))− c > 0, we have that limt→∞ kc(t) = ∞. Furthermore,

∫ ∞
k0

p(c, x) dx =
m(c, k0) = m0 < ∞, implying by (P) that

p(t) = 1

F2(kc(t), rc(t))
= p

(
c, kc(t)

) → 0 as t → ∞,

since p2(c, k) < 0 for all (c, k) ∈ D, by the definition of p and the envelope theorem.
Let ε > 0 be given. By Proposition 1, there is T1 > 0 such that:

∣∣mc(t) − m(c, k0)
∣∣ <

ε

3
for all t > T1. (20)

Furthermore, because limt→∞ p(t) = 0 there is T2 > T1 such that:

p(t)kc(T1) <
ε

3
for all t > T2. (21)

Fix any T ′ > T2. Then, since k̇c(t) > 0 for all t � 0, and p(t) is positive and decreasing in t ,
we can use (HaR) to write:

T ′∫

T1

rc(t) dt =
T ′∫

T1

p(t)k̇c(t) dt �
T ′∫

T1

p
(
T ′)k̇c(t) dt

= p
(
T ′)

T ′∫

T1

k̇c(t) dt = p
(
T ′)[kc

(
T ′) − kc(T1)

]
. (22)

6 Dixit et al. [11, p. 553] define a regular maximin path through their conditions (a)–(c). In the context of our
one-consumption good model, (i) and (iii) correspond to their conditions (a) and (b), while (ii) is equivalent to their
condition (c), given that q2(t) = 1 for all t � 0.
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On the other hand, by using (20),

T ′∫

T1

rc(t) dt = mc(T1) − mc
(
T ′) = (

mc(T1) − m(c, k0)
) − (

mc
(
T ′) − m(c, k0)

)

�
∣∣mc(T1) − m(c, k0)

∣∣ + ∣∣mc
(
T ′) − m(c, k0)

∣∣ <
2ε

3
. (23)

Combining (22) and (23),

p(t)
[
kc(t) − kc(T1)

]
<

2ε

3
for all t > T2.

This yields:

p(t)kc(t) < p(t)kc(T1) + 2ε

3
for all t > T2. (24)

By (21) and (24) we obtain p(t)kc(t) < ε for all t > T2, thus establishing (CVT).
Part 2: If m0 < m∗(k0), then the Hartwick path (cc(t), kc(t), rc(t)) from k0 with cc(t) = c for

all t � 0 and m(c, k0) = m0 is a regular maximin path. By Part 1 and the definition of a regular
maximin path, it is sufficient to show that (cc(t), kc(t), rc(t)) satisfies (FCV).

By Propositions 1 and 4, if m0 < m∗(k0), then there are c′ > c and a Hartwick path
(cc′

(t), kc′
(t), rc′

(t)) from k0 with cc′
(t) = c′ for all t � 0 and m′

0 ≡ m(c′, k0) > m0. By
Part 1, (cc(t), kc(t), rc(t)) satisfies (HoR) and is thus, by Lemma 6, competitive at prices
p(t) = p(c, kc(t)), q1(t) = p(t) and q2(t) = 1. Therefore:

T∫

0

p(t)
(
c′ − c

)
dt �

T∫

0

d

dt

(
p(t)

(
kc(t) − kc′

(t)
))

dt +
T∫

0

(
ṁc(t) − ṁc′

(t)
)
dt

= p(T )
(
kc(T ) − kc′

(T )
) +

T∫

0

(
rc′

(t) − rc(t)
)
dt.

Since p(T )kc′
(T ) � 0 for all T � 0 and, by Part 1, (cc(t), kc(t), rc(t)) satisfies (CVT):

∞∫

0

p(t)
(
c′ − c

)
dt �

∞∫

0

(
rc′

(t) − rc(t)
)
dt = m′

0 − m0.

Hence,
∫ ∞

0 p(t) dt � (m′
0 − m0)/(c

′ − c) < ∞, thereby establishing (FCV). �
5. Concluding remark

Based on an alternative interpretation of Hartwick’s rule in the continuous DHSS-model we
have shown that following this rule will lead to a minimization of cumulative resource input
along constant consumption paths. Using this insight we have derived a new necessary and suf-
ficient condition for sustaining consumption indefinitely bounded away from zero. Based on this
characterization, we have established the existence and efficiency of maximin paths under much
weaker conditions than before. The approach which we have used to obtain these results, how-
ever, cannot be applied to paths with non-constant consumption over time. As established in
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earlier work [5], along an optimal path where Hotelling’s rule is fulfilled, obeying Hartwick’s
rule (and thus minimizing resource input per unit of capital accumulation) is not compatible with
having consumption varying over time.

The following result [16, Theorem 1] yields intuition7: If an interior and competitive path
(c(t), k(t), r(t)) from (k0,m0) is efficient, then any feasible path (c′(τ ), k′(τ ), r ′(τ )) from
(k′,m′) with c′(τ ) � c(T + τ) for all τ ∈ [0,∞) must satisfy

p(T )k′ + m′ � p(T )k(T ) + m(T ),

where p(T ) = 1/F2(k(T ), r(T )). Therefore, along an efficient path where c(t) is constant,
p(T )k(t) + m(t) is minimized at T among all t in the neighborhood of T , implying as a neces-
sary first-order condition that the derivative of p(T )k(t) + m(t) w.r.t. t is zero at T , leading to
Hartwick’s rule: p(T )k̇(T ) = −ṁ(T ) = r(T ).

By the same reasoning, if c(t) is strictly increasing, so that c′(τ ) defined by c′(τ ) = c(T +τ) is
increasing in T for each τ ∈ [0,∞), then p(T )k(t)+m(t) is increasing as a function of t at T and
p(T )k̇(T ) > −ṁ(T ) = r(T ). This makes it worthwhile to increase the speed of the trajectory in
(k,m) space at the expense of its steepness. Hence, at each t , r(t) and k̇(t) = F(k(t), r(t))−c(t)

exceeds the rates at which resource input per unit of capital accumulation would have been
minimized given c(t). These results, which are formally demonstrated in online appendix C,
show how efficient paths with growing consumption deviate from Hartwick’s rule.
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